We are an academic research group focusing on Contextual Artificial Intelligence for Computer Assisted Interventions.
CAI4CAI is embedded in the School of Biomedical Engineering & Imaging Sciences at King’s College London, UK
Our engineering research aims at improving surgical & interventional sciences
We take a multidisciplinary, collaborative approach to solve clinical challenges (📖)
Our labs are located in St Thomas' hospital, a prominent London landmark
We design learning-based approaches for multi-modal reasonning
Medical imaging is a core source of information in our research
We design intelligent systems exploiting information captured by safe light
We thrive at providing the right information at the right time to the surgical team and embrace human/AI interactions (📖)
Strong industrial links are key to accelerate translation of cutting-edge research into clinical impact
We support open source, open access and involve patients in our research
CAI4CAI members are leading the organization of the cross-modality Domain Adaptation challenge (crossMoDA) for medical image segmentation Challenge, which runs as an official challenge during the Medical Image Computing and Computer Assisted Interventions (MICCAI) 2021 conference.
King’s College London, School of Biomedical Engineering & Imaging Sciences and Moon Surgical announced a new strategic partnership to develop Machine Learning applications for Computer-Assisted Surgery, which aims to strengthen surgical artificial intelligence (AI), data and analytics, and accelerate translation from King’s College London research into clinical usage.
Yijing will develop a 3D functional optical imaging system for guiding brain tumour resection. Yijing presenting her work at New Scientist Live. She will engineer two emerging modalities, light field and multispectral imaging into a compact device, and develop novel image reconstruction algorithm to produce and display high-dimensional images.
Miguel will collaborate with Fang-Yu Lin and Shu Wang to create activities to engage school students with ultrasound-guidance intervention and fetal medicine. In the FETUS project, they will develop interactive activities with 3D-printed fetus, placenta phantoms as well as the integreation of a simulator that explain principles of needle enhancement of an ultrasound needle tracking system.
The Centre for Doctoral Training in Surgical & Interventional Engineering
(CDT SIE) is an innovative three-and-a-half year PhD training program aiming to deliver translational research and transform patient pathways.
Through a comprehensive, integrated training programme, the Centre for Doctoral Training in Smart Medical Imaging
trains the next generation of medical imaging researchers.
The Functionally Accurate RObotic Surgery
(FAROS) H2020 project aims at improving functional accuracy through embedding physical intelligence in surgical robotics.
The GIFT-Surg
project is an international research effort developing the technology, tools and training necessary to make fetal surgery a viable possibility.
The icovid
project focuses on AI-based lung CT analysis providing accurate quantification of disease and prognostic information in patients with suspected COVID-19 disease.
Up to 100 King’s-China Scholarship Council PhD Scholarship programme
(K-CSC) joint scholarship awards are available per year to support students from China who are seeking to start an MPhil/PhD degree at King’s College London.
The integrated and multi-disciplinary approach of the MRC Doctoral Training Partnership in Biomedical Sciences
(MRC DTP BiomedSci) to medical research offers a wealth of cutting-edge PhD training training opportunities in fundamental discovery science, translational research and experimental medicine.
The Translational Brain Imaging Training Network
(TRABIT) is an interdisciplinary and intersectoral joint PhD training effort of computational scientists, clinicians, and the industry in the field of neuroimaging.
The Wellcome / EPSRC Centre for Medical Engineering
combines fundamental research in engineering, physics, mathematics, computing, and chemistry with medicine and biomedical research.
Pathways to clinical impact
Moon Surgical
has partnered with us to develop machine learning for computer-assisted surgery. More information on our press release.
COSMONiO
is the industrial sponsor of Theo Barfoot’s’s PhD on Active and continual learning strategies for deep learning assisted interactive segmentation of new databases.
Following successful in-patient clinical studies of CAI4CAI’s translational research on computational hyperspectral imaging system for intraoperative surgical guidance, Hypervision Surgical Ltd
was founded by Michael Ebner, Tom Vercauteren, Jonathan Shapey, and Sébastien Ourselin.
In collaboration with CAI4CAI, Hypervision Surgical
’s goal is to convert the AI-powered imaging prototype system into a commercial medical device to equip clinicians with advanced computer-assisted tissue analysis for improved surgical precision and patient safety.
Tom Vercauteren worked for 10 years with Mauna Kea Technologies
(MKT) before resuming his academic career.
Medtronic
is the industrial sponsor of Tom Vercauteren’s Medtronic / Royal Academy of Engineering Research Chair in Machine Learning for Computer-Assisted Neurosurgery.
Exemplar outputs of our research